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The most general problem in this direction is the nonlinear system of the
form

ẏ(t) = f (t, y(t), u(t)), y(0) = y0 ∈ Rd , (1)

and the aim is to find the vector valued function u which steers the system
to a given final state y(T ) = yT .
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The proofs of controllability of nonlinear systems essentially rely on the
linear theory and Leray-Schauder-Tikhonov fixed point type theorems.
Roughly speaking, we consider the Taylor expansion of f in the
neighborhood of (t, y , u) = (t, 0, 0):

f (t, y , u) = f (t, 0, 0) + fy (t, 0, 0)y + fu(t, 0, 0)u + g(t, y , u),

and then we linearize (1) by considering
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ẏ(t) = f (t, 0, 0) + fy (t, 0, 0)y + fu(t, 0, 0)u + g(t, z , u),

y(0) = y0 ∈ Rd , y(T ) = yT ∈ Rd ,
(2)

for a fixed function z : [0,T ]→ Rd of appropriate regularity.
One proves or assumes existence of the control u such that (2) holds and
thus one obtains the mapping

T (z) = y

which adjoins the state y to the previously fixed function z . Clearly, if we
prove existence of a fixed point for the mapping T we will prove existence
of control to (1).
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Here, we shall consider an ODE system with quasilinear non-negative
definite symmetric right-hand side

ẏ(t) = −A(t, y(t))y(t) + B(t, y(t))u(t), y(0) = y0, y(T ) = yT , (3)

where (t, y) 7→ A(t, y) ∈ Rd×d and (t, y) 7→ B(t, y) ∈ Rd×n are
matrix-valued functions of appropriate regularity.

Darko Mitrovic Global Controllability for Quasilinear Non-negative Definite System of ODEs and SDEsJune 16, 2021 5 / 32



We shall imply:

(i) A : R+ × Rd → Rd×d is a smooth non-negative definite symmetric
matrix;

(ii) B : R+ × Rd → Rd×n is a matrix-valued L∞-uniformly bounded
mapping;

(iii) For every v = (v1, . . . , vd), vj ∈ L2(Ω;C ([0,T ])), j = 1, . . . , d , the
Gramian (note the difference in the notation of the final time T and
the transpose T below)

Gc(0,T ) =

∫ T

0
e
∫ t

0 −A(t,v)dt′B(t, v)B(t, v)T
(
e
∫ t

0 (−A(t,v))dt′
)T

dt

(4)
is invertible.
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Proposition

Let A ∈ Rd×d and B ∈ Rd×m be constant matrices. If the Kalman rank
condition

rank
[
B
∣∣AB∣∣ . . . ∣∣Ad−1B

]
= d (5)

holds, then the Gramian

Gc(0,T ) =

∫ T

0
e
∫ t

0 (−|v |mA)dt′BBT
(
e
∫ t

0 (−|v |mA)dt′
)T

dt (6)

corresponding to

y ′(t) = −A|v(t)|my(t) + Bu(t), (7)

where A ∈ Rd×d and B ∈ Rd×n are constant matrices, is invertible for
every v ∈ C ([0,T ]) (in other words, (iii) holds).
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Proof sketch

We consider the perturbation:

y ′ε(t) = (−A|v(t)|m − εA)yε(t) + Buε(t), ε > 0. (8)

and prove equivalence of controlability of the latter system with the
Kalman condition using the standard Kalman approach.

By letting ε→ 0 we see that limit functions y and u satisfy

y ′(t) = −A|y(t)|my(t) + Bu(t), y(0) = y0,

with appropriate initial and end conditions implying controllability of the
system.
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Background from functional analysis

The linear mapping K : X → Y , where X and Y are the Banach spaces is
surjective if and only if the dual mapping K ∗ : Y ∗ → X ∗ is coercive i.e.

|K ∗y∗|X∗ ≥ δ|y∗|Y ∗ .

If X and Y are reflexive Banach spaces, then the latter is equivalent with
the existence of global minimum for every y ∈ Y of the functional

J (y , y∗) =
1

2
|K ∗y∗|2X∗ + 〈y , y∗〉.

We note that the Eurler-Lagrange will provide and explicit expression for
y∗.
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Leray-Schauder-Tikhonov fixed point thm

Let T be a continuous and compact mapping of a Banach space X into
itself, such that the set

{x ∈ T : x = λTx}

is bounded.
Then, T has a fixed point.
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We are concerned with a control problem for the nonlinear system of
ODEs of the following form

dy

dt
(t) = −A(t, y(t))y(t) + B(t, y(t))u(t), t ∈ [0,T ], (9)

y(0) = y0, (10)

where A : [0,T ]× R→ Rd×d is a smooth symmetric positive semi-definite
matrix-valued mapping, B : [0,T ]× R→ Rd×n is a smooth matrix-valued
mapping uniformly bounded with respect to L∞-norm, and y0 ∈ Rd is
given initial state. The problem consists of determining a function
u ∈ L2([0,T ];Rn) such that for the given final state yT ∈ Rd and the final
time T

y(T ) = yT . (11)
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First, we shall linearize equation (9) as follows

dy

dt
(t) = −A(t, v(t))y(t) + B(t, v(t))u(t), t ∈ [0,T ], (12)

where v ∈ C ([0,T ]) is fixed. For such a fixed v , we look for the control u
steering the system from the initial state y0 to the prescribed final state
yT .

We denote
T (v) = y .

In our case, we will aim to prove that the solution y and its derivative y ′

are bounded independently of v and u which will provide the compactness
of the mapping T i.e. it will provide existence of the fixed point y being
the solution to the non-linearized problem.
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The adjoint system associated to the linearized control problem is given by

−dϕ

dt
(t) =− A∗(t, v(t))ϕ(t), t ∈ [0,T ], (13)

ϕ(T ) =ϕT , (14)

where ϕT ∈ Rd minimizes the convex functional

J(ϕT ) =

∫ T

0
|B∗(t, v(t))ϕ(t)|2dt + 〈y0, ϕ(0)〉 − 〈yT , ϕT 〉. (15)
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In the language of the functional analysis mentioned above, we take

Ku = yT , K ∗(ϕT ) = B∗ϕ.

Thus, we have:

Darko Mitrovic Global Controllability for Quasilinear Non-negative Definite System of ODEs and SDEsJune 16, 2021 14 / 32



A solution to problem (12) is then given by u(t) = B∗ϕ(t) and we have

|u(t)| =
∣∣B∗(t, v(t))ϕ(t)

∣∣ =
∣∣B∗(t, v(t))e

∫ T
t −A(s,v(s)) dsϕT

∣∣
≤ C |ϕT |,

(16)

where ϕ is a solution to the corresponding adjoint problem and C is
independent of T .
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We have thus bound on u and using the non-positive definiteness of the
matrix of the system, we are able to obtain bound of y independent of u
and v .
We need bound of y ′ to get the wanted compactness of T .
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To this end, introduce a change of variables τ = K1t into (12), for some
parameter K1 > 0. Denote by

ṽ(τ) = v
( τ
K1

)
, ũ(τ) = u

( τ
K1

)
, ỹ(τ) = y

( τ
K1

)
,

Ã(τ, ṽ(τ)) = A(
τ

K1
, ṽ(τ)), B̃(τ, ṽ(τ)) = B(

τ

K1
, ṽ(τ)).
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Since an arbitrary ṽ ∈ C([0,K1T ]) is bounded, it follows from (16) that ũ
is also bounded. Thus for any ṽ one can choose a constant K1 ≥ 1 such
that ∣∣∣ Ã(·, ṽ(·))

K1

∣∣∣ ≤ 1 and
∣∣∣B̃(·, ṽ(·))

ũ

K1

∣∣∣ ≤ 1.
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dỹ

dτ
= − Ã(τ, ṽ(τ))

K1
ỹ(τ) + B̃(τ, ṽ(τ))

ũ(τ)

K1
, τ ∈ [0,K1T ], (17)

ỹ(0) = y0, ỹ(K1T ) = yT . (18)
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Next, introduce an operator T : C([0,T ])→ C([0,T ]), which maps ṽ to a
solution ỹ of (17), (18) (more precisely to the first component of the
solution (ỹ , ũ)) i.e.,

T (ṽ) = ỹ .
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Furthermore, the solution of (17), (18) is given by

ỹ(τ) = exp
(
−
∫ τ

0

Ã(s, ṽ(s))

K1
ds
)[ ∫ τ

0
exp

(∫ s

0

Ã(θ, ṽ(θ))

K1
dθ
)
×

× B̃(s, ṽ(s))
ũ(s)

K1
ds + y0

]
.

(19)
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one can estimate ỹ as follows

|ỹ(τ)| ≤
∣∣ exp

(
−
∫ τ

0

Ã(s, ṽ(s))

K1
ds
)∣∣[ ∫ τ

0

∣∣ exp
(∫ s

0

Ã(θ, ṽ(θ))

K1
dθ
)
1
∣∣ ds

+ |y0|
]
≤ τ + |y0|,

(20)

where 1 = (1, . . . , 1) ∈ Rd . This estimate together with (17) implies

|∂τ ỹ | ≤ τ + |y0|+ 1. (21)
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Therefore, by the Arzela-Ascolli theorem, the operator
T : C ([0,T ])→ C ([0,T ]) is compact. Moreover, the set

{x ∈ C([0,T ]) : x = λTx , λ ∈ [0, 1]}

is bounded due to (20).

Darko Mitrovic Global Controllability for Quasilinear Non-negative Definite System of ODEs and SDEsJune 16, 2021 23 / 32



The latter implies that the conditions of the Leray-Schauder fixed point
theorem are satisfied for the operator T which in turn implies existence of
a fixed point ỹ of T that satisfies

dỹ

dτ
= − Ã(τ, ỹ(τ))

K1
ỹ(τ) + B̃(τ, ỹ(τ))

ũ(τ)

K1
, τ ∈ [0,T ].
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By reintroducing the change of variables t = τ/K1 we obtain the solution
y1(t) = ỹ(t/K1) to (9) on the interval [0,T/K1].
We now repeat the whole procedure for the problem (9) with the initial
data given at T/K1, i.e., y(T/K1) = y1(T/K1), and the same final state
y(T ) = yT . We thus obtain the function y2 representing the solution to
(9) on the interval [T/K1,T/K1 + T/K2] etc...
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A numerical example

We shall consider population dynamics with species intending to avoid
crowding. It is interesting to inspect how to control the populations by
adding new individuals or in some other way by improving the living
conditions (in the frame of the given nonlinear model, of course). We
assume that we have two species whose population quantities are denoted
by y1 and y2 and which have tendency to avoid crowding. Mathematical
model of the phenomenon is given by

dy1 = (|y1 + y2|(−2y1 + 2y2) + u)dt + Z1dWt

dy2 = |y1 + y2|(y1 − y2)dt + Z2dWt
(22)

and we aim to maintain the population by randomly introducing new
individuals u1 and u2 of the corresponding species into the system.
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we start with the populations

y1(0, ω) = y2(0, ω) = 1,

and we want to have the same population at a final time T = 0.5

E (y1(0.5, ·)) = E (y2(0.5, ·)) = 2. (23)
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By direct substitution, we know that for the problem

dy = (A(t)y + B(t)u)dt + ZdWt , E (y(0, ·)) = y0, E (y(0.5, ·)) = y1,

the control function is given by

u(t, ω) = −BTΦT(0, t)Wc(0, 1)−1[y0 − Φ(0, 1)y1] (24)

where

Wc(0, t) =

∫ t

0
Φ(0, τ)B(τ)BT(τ)ΦT(0, τ)dτ (25)

and Φ solves the system

Φ′ = A(t)Φ, Φ(0, 0) = I . (26)
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We use the following recursive procedure

dyn1 = (|yn−1
1 + yn−1

2 |(−2yn1 + 2yn2 ) + un)dt + Zn
1 dWt

dyn2 = |yn−1
1 + yn−1

2 |(yn1 − yn2 )dt + Zn
2 dWt

where un is given by the corresponding variant of (24).
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Simulation results

(a) Initial iteration (b) After two iterations.

(c) After three iterations. (d) After four iterations.

(e) After five iterations. (f) After six iterations.

Figure: The numerical procedure after one to six iterations.
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(a) Initial iteration (b) After two iterations.

(c) After three iterations. (d) After four iterations.

(e) After five iterations. (f) After six iterations.

Figure: The numerical procedure after one to six iterations involving perturbations
of final states.
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Figure: The state evolution for six different samplings.
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